Galois extensions for coquasi-Hopf algebras

نویسنده

  • ADRIANA BALAN
چکیده

The notions of Galois and cleft extensions are generalized for coquasi-Hopf algebras. It is shown that such an extension over a coquasi-Hopf algebra is cleft if and only if it is Galois and has the normal basis property. A Schneider type theorem ([33]) is proven for coquasi-Hopf algebras with bijective antipode. As an application, we generalize Schauenburg’s bialgebroid construction for coquasi-Hopf algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crossed Products and Cleft Extensions for Coquasi-hopf Algebras

The notion of crossed product with a coquasi-Hopf algebra H is introduced and studied. The result of such a crossed product is an algebra in the monoidal category of right H-comodules. We give necessary and sufficient conditions for two crossed products to be equivalent. Then, two structure theorems for coquasi Hopf modules are given. First, these are relative Hopf modules over the crossed prod...

متن کامل

Homotopic Hopf-Galois extensions of commutative differential graded algebras

This thesis is concerned with the definition and the study of properties of homotopic Hopf-Galois extensions in the category Ch 0 k of chain complexes over a field k, equipped with its projective model structure. Given a differential graded k-Hopf algebra H of finite type, we define a homotopic H-Hopf-Galois extension to be a morphism ' : B ! A of augmented H-comodule dg-k-algebras, where B is ...

متن کامل

Monoidal Categories of Comodules for Coquasi Hopf Algebras and Radford’s Formula

We study the basic monoidal properties of the category of Hopf modules for a coquasi Hopf algebra. In particular we discuss the so called fundamental theorem that establishes a monoidal equivalence between the category of comodules and the category of Hopf modules. We present a categorical proof of Radford’s S formula for the case of a finite dimensional coquasi Hopf algebra, by establishing a ...

متن کامل

Pseudo-galois Extensions and Hopf Algebroids

Pseudo-Galois extensions are shown to be depth two extensions. Studying its left bialgebroid, we construct an enveloping Hopf algebroid for the semi-direct product of groups or involutive Hopf algebras and their module algebras. It is a type of cofibered sum of two inclusions of the Hopf algebra into the semi-direct product and its derived right crossed product. Van Oystaeyen and Panaite observ...

متن کامل

An action-free characterization of weak Hopf-Galois extensions

We define comodule algebras and Galois extensions for actions of bialgebroids. Using just module conditions we characterize the Frobenius extensions that are Galois as depth two and right balanced extensions. As a corollary, we obtain characterizations of certain weak and ordinary Hopf-Galois extensions without reference to action in the hypothesis. 2000 AMS Subject Classification: 13B05, 16W30

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008